Indirect Calorimetry: Taking the Guess Work Out of Feeding Critically Ill Patients

Jennifer A. Wooley, MS, RD, CNSC
GE Healthcare
May 5, 2017

Consequences of Malnutrition in Critically Ill Patients

Metabolic stress of acute illness
+ Malnutrition

= Increased healthcare costs¹
= Higher rate of ventilator dependence²
= Longer ICU stays¹
= Higher morbidity and mortality rates²

Pros and Cons of Predictive Equations

<table>
<thead>
<tr>
<th>PROs</th>
<th>CONs</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Convenient</td>
<td>• Hundreds of equations and variables to consider</td>
</tr>
<tr>
<td>• Used more frequently</td>
<td>• Accuracy < 40%</td>
</tr>
<tr>
<td>• Inexpensive</td>
<td>• No consensus on how to select equations</td>
</tr>
<tr>
<td></td>
<td>• Results vary from clinician to clinician</td>
</tr>
</tbody>
</table>

Pros and Cons of Indirect Calorimetry

<table>
<thead>
<tr>
<th>PROs</th>
<th>CONs</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Accurate</td>
<td>• Not always available (Newer technology now integrated into ventilator)</td>
</tr>
<tr>
<td>• Gold standard</td>
<td>• Not all clinicians trained in use and interpretation</td>
</tr>
<tr>
<td>• Doesn’t have limitations of equations</td>
<td>• Variable insurance reimbursement</td>
</tr>
<tr>
<td></td>
<td>• Equipment is fairly costly</td>
</tr>
<tr>
<td></td>
<td>• No clinical trials to prove that it directly improves patient outcomes</td>
</tr>
</tbody>
</table>

What is Indirect Calorimetry (IC)?

- Calculation of heat production by measuring pulmonary gas exchange
- Measurements of inspired and expired O_2 and CO_2
- Determination of:
 - Resting Energy Expenditure (REE)
 - Respiratory Quotient (RQ)

Calculations for IC

RESETTING ENERGY EXPENDITURE
REE (Kcal/d) = [(VO$_2$ x 3.94) + (VCO$_2$ x 1.11)] x 1,440 min/day

RESPIRATORY QUOTIENT

\[
RQ = \frac{VCO_2 \text{ (carbon dioxide production)}}{VO_2 \text{ (oxygen consumption)}}
\]

Equipment Options for IC

- Metabolic cart
- Handheld device
- Indirect calorimetry module built in to a mechanical ventilator

Metabolism

Metabolism, measured in calories, is the biochemical process of combining nutrients with oxygen to release the energy needed for the body to function.

\[
C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O \rightarrow ATP \text{ (ENERGY)}
\]

More simply stated, resting metabolism is the number of calories that the body burns while at rest.

Metabolism, measured in calories, is the biochemical process of combining nutrients with oxygen to release the energy needed for the body to function.

\[
C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O \rightarrow ATP \text{ (ENERGY)}
\]

More simply stated, resting metabolism is the number of calories that the body burns while at rest.
The Classic Indirect Calorimeter

Indirect Calorimetry Module within Mechanical Ventilator

Handheld and Table Top Indirect Calorimeters
When is IC Helpful?

- When you cannot accurately estimate caloric requirements
- When predictive equations produce an inadequate clinical response in a patient
- When clinical signs suggest under- or over-feeding

SCCM and ASPEN 2016 Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Critically Ill Patient

1. **A3a**: IC should be used to determine energy requirements when available
2. **C3**: Provide at least 80% of estimated or calculated goal energy and protein within 48-72 hours over the 1st week of hospitalization
3. **I1**: Pulmonary failure – High fat low carbohydrate formulations designed to manipulate RQ and decrease CO₂ production are not recommended for use
4. **M4b**: Burn – IC should be used to assess energy needs with weekly repeated measures
5. **Q5**: Obesity – Target energy requirements should be measured by IC. Feed at 65-70% of target

Factors Affecting the Accuracy of Estimates

- Multiple trauma
- Neurological trauma
- Burns
- Multi-system organ failure
- Sepsis
- Systemic inflammatory response syndrome
- Acute or chronic respiratory distress syndrome
- Use of paralytic agents or sedation
- Post-operative organ transplantation
- Large or multiple open wounds
- Malnutrition with altered body composition
 - Underweight
 - Obesity
 - Limb amputation
 - Peripheral edema
 - Ascites

Consequences of Under- or Overfeeding

- Underfeeding¹,²
 - Impairs regeneration of respiratory epithelium
 - Contributes to muscle weakness and respiratory dysfunction
- Overfeeding³,⁵
 - Worsens metabolic stress
 - Increases the work of breathing (can lengthen ventilator dependence)

References:

How to Conduct IC Measurements

- Intermittent
- Continuous

“Snapshot” studies of ≤ 30 minutes are more common than continuous monitoring.

Results are extrapolated to a 24-hour day

Achieving a Steady State is Key

- Steady state conditions:
- McClave Definition:
 - 5 minutes with 5% CV in vO₂, vCO₂
 - 10 minutes with 10% CV in vO₂, vCO₂

Results reflect a steady state for at least 5 consecutive minutes (or follow your unit’s protocols)

- CV = co-efficient of variation

What to do if You don’t Achieve Steady State?

- Compare predicted VCO₂ and VO₂ to measured levels
 - Normal Adult VCO₂ = 2 - 3 ml/kg/minute
 - Normal Adult VO₂ = 3 - 4 ml/kg/minute

- Note: use the most appropriate reference weight for these calculations

Physiologic Issues that can Affect Results

<table>
<thead>
<tr>
<th>Altered Gases</th>
<th>Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevated VCO₂</td>
<td>• Metabolic acidosis</td>
</tr>
<tr>
<td></td>
<td>• Hypermetabolism</td>
</tr>
<tr>
<td>Decreased VCO₂</td>
<td>• Metabolic alkalosis</td>
</tr>
<tr>
<td></td>
<td>• Hypometabolism</td>
</tr>
<tr>
<td></td>
<td>• Starvation/ketosis</td>
</tr>
<tr>
<td>Elevated VO₂</td>
<td>• Sepsis</td>
</tr>
<tr>
<td></td>
<td>• Hyperthermia</td>
</tr>
<tr>
<td></td>
<td>• Shivering/agitation/excessive movement</td>
</tr>
<tr>
<td></td>
<td>• Increased minute ventilation</td>
</tr>
<tr>
<td></td>
<td>• Hemodialysis (within 4 hr of treatment)</td>
</tr>
<tr>
<td></td>
<td>• Overfeeding</td>
</tr>
<tr>
<td>Decreased VO₂</td>
<td>• Hypothermia</td>
</tr>
<tr>
<td></td>
<td>• Hypothyroidism</td>
</tr>
<tr>
<td></td>
<td>• Paralysis</td>
</tr>
<tr>
<td></td>
<td>• Heavy sedation</td>
</tr>
</tbody>
</table>

Situations Where VCO_2 May Be Elevated

- Metabolic acidosis
- Hyperventilation
- Hypermetabolism
- Overfeeding

Situations Where VCO_2 May Be Decreased

- Metabolic alkalosis
- Hypoventilation
- Hypometabolism
- Gluconeogenesis
- Starvation/ketosis
- Underfeeding

Situations Where VO_2 May Be Elevated

- Sepsis
- Hypermetabolism
- Hyperthermia
- Shivering / agitation / pain / excessive movement
- Increased minute ventilation
- Overfeeding

Situations Where VO_2 May Be Decreased

- Paralysis
- Coma
- General anesthesia
- Sedation
- Analgesics
- Muscle relaxants
- Hypothermia
- Fasting
- Starvation
- Hypothyroidism
- Sleep
- Advanced age
Recommendations to Improve IC Measurements: Patient -> Equipment -> Environment

- Do measurements in a quiet, thermoneutral environment
- Rest patient in supine position > 30 min. prior to the study
- Do the study ~1 hr after an intermittent feeding if thermogenesis is included in the REE; 4 hr after the feeding if it is not
- Ensure that the rate and composition of continuously infused nutrients is stable at least 12 hr prior to the study

Recommendations to Improve IC Measurements: Patient -> Equipment -> Environment

- IC measurements may not be valid within:
 - 8 to 12 hrs of general anesthesia
 - 90 minutes of changes in ventilatory settings
 - 3 to 4 hrs of hemodialysis
 - 1 hr of any painful procedures

Technical Issues that can Affect Results

- Keep FIO₂ constant during the measurement
- Mechanical ventilation with FIO₂ > 60
- Mechanical ventilation with PEEP > 12 cm H₂O
- Hyper/hypoventilation (alters the body's CO₂ stores)
- Leak(s) in the sampling system
- Moisture in the system can affect the oxygen analyzer
- Continuous system flow > 0 L/min during exhalation
- Inability to collect all expiratory flow

Interpretation of the Measured REE

- In general, feed critically ill patients 100% REE without adding activity or stress factors
- Provide sufficient protein (1.5-2.0 gm/kg)
- Re-evaluate REE when indicated

Interpretation of RQ

• Historically used to determine substrate utilization.\(^1\)
 CAUTION: This varies by patient and condition\(^2\)
 • Stress response
 • Underlying pulmonary disease
 • Acid/base abnormalities
 • Pharmacologic agents

• RECOMMENDATION: Use RQ to validate test results and to gauge whether RQ is within normal biological range (0.67 to 1.3)\(^3\)\(^7\)

Designing a Nutrition Regimen

• Consider the phase of the patient’s response to metabolic stress
 • Stress phase, or ebb phase (12 – 24 hr.)
 • Catabolic phase, or flow phase (7 – 10 days)
 • Anabolic phase (variable time, may last for months)

• Adjust nutritional support according to phase of metabolic stress
 • In all phases, provide a balanced mix of protein:carbs:fat at approximately 20%: 50%: 30%

Energy Considerations for Each Phase of the Stress Response

- **Stress and catabolic phases = metabolic support**
 - Preserve lean body mass without overfeeding
 - High protein feedings ≤100% of REE

- **Anabolic phase**
 - Marked rise in energy requirements
 - Focus on nutrition repletion and recovery
 - Patients may be fed up to 130% of their measured REE
 - Ongoing aggressive protein delivery

Interpretation of the Measured REE

- In general, feed critically ill patients 100% REE without adding activity or stress factors
- Provide sufficient protein (1.5-2.0 gm/kg)
- Re-evaluate REE when indicated

Measure energy expenditure in ventilated patients requiring an ICU stay of > 5 days who need nutrition intervention
- Anticipated ICU LOS ≤ 5 days – IC once/week
- Anticipated ICU LOS > 7 days – IC 2-3 times/week

Patient Case

- 44 y.o. female
- Diagnosis: Necrotizing Fasciitis
- PMH:
 - HTN
 - Asthma
 - Hypothyroidism
 - Morbid obesity
- PSH:
 - Appendectomy
 - Hysterectomy
 - Oophorectomy

The Patient’s Nutrition Status

- Ht: 5’8”
- Wt: 188kg BMI: 63!
- Sedentary; in usual state of health until admission
Review of Clinical Course

- Sepsis w/ respiratory failure
- OR: Right BKA
- Post-operative complications:
 - C. Diff diarrhea
 - Poor wound healing
 - UTI

What is the Patient’s Predicted Energy Expenditure?

- HBE (BEE x 1.3-1.6) 2156-2653 kcals/d
- Swinamer 2955 kcals/d
- IJEE(v) 2196 kcals/d
- 20-25 kcal/kg 1900-2375 kcals/d
- Mifflin-St. Jeor 2559 kcals/d

Is this patient is a good candidate for IC?

- YES!

 - Sepsis
 - Obesity
 - Altered body surface area secondary to BKA
 - Respiratory failure
 - Hypermetabolism
 - Wound healing

Indirect Calorimetry Studies

- Hospital Day #8 1st study: Valid
 - REE 2259 calories/day; RQ 0.83

- Hospital Day #15 2nd study: Valid
 - REE 2730 calories/day; RQ 0.83
Summary

- Indirect calorimetry (IC) is the gold standard for determining energy expenditure in critically ill patients
- IC is objective and accurate
- The REE does not need to be adjusted by stress or activity factors
- Use the RQ primarily to validate test results
- IC is a valuable tool for
 - monitoring patient response to metabolic stress
 - monitoring nutrition interventions
 - optimizing nutrition

Potential Benefits of Using IC

- Prevention of over- or underfeeding
- Reduced resource utilization & associated cost savings
- Improved outcomes
 - Fewer days on mechanical ventilation
 - Shorter ICU LOS